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Distributed Circuits and Transmission Lines 
 
 

In circuit analysis,  wire are typically considered to have no electrical properties, 

except as to allow current to flow between components.  Hence, they have no effect on 

the operation of the circuit.  In real life, however, wires add both capacitance and 

inductance to the circuit.  A particularly simple case to consider is when wires come in 

pairs of parallel conductors, such as shown below:  As a pair, these wires are considered 

to be a transmission line, to which components such as voltage sources and loads can be 

attached to form a complete circuit.  

 

It is known from electromagnetics that each 

short length Δz of a transmission line has series 

inductance and shunt capacitance, which can be represented as the T-section equivalent 

circuit (or, unit cell) shown below: 

 

 

 

 

 

 

 

Here, L' and C' are the inductance per meter and capacitance per meter of the 

transmission line, respectively, and Δz is considered to be a “small enough” distance, 

which we’ll define later.  In general, C' increases as the conductors/wires are brought 

closer together, and L' increases, but the product is always related by: 
 

 

1
L' C'  

= c  ,  

 

where c is the speed of light in the host medium 
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To understand how these distributed inductances and capacitances can affect the 

operation of a circuit, consider an infinitely long (to the right) transmission line, modeled 

as an infinite chain of unit cells below. 

 

 

 

 

 

 

 

Here, the first three cells are shown.  To find the input impedance Zin of the infinite line, 

we first note that since the line is infinite, it will have the same impedance if one cell is 

removed.  Hence, we can remove all the cells after the first cell and replace them with a 

single lumped impedance of value Zin, as shown in the figure below. 

 

 

 

 

 

 

 

 

We can solve for the input impedance by recognizing that Zin is simply the inductive 

impedance of the left inductor, in series with the impedance of the capacitor in parallel 

with the right-inductor in series with the Zin of the rest of the infinite line: 

 

 
Zin = jω L '

2
Δz +

1
jωC 'Δz

 jω L '
2
Δz + Zin

⎡
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⎤
⎦⎥

 

 

Solving for Zin, we find, after some manipulation 
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Zin = L '
C ' + jω L '

2
Δz⎡

⎣⎢
⎤
⎦⎥

2

 

If we make Δz small so that 
 
z << 1

ω L 'C '
, we find 

Zin = L '
C '  

This impedance is typically called the characteristic impedance of the transmisson line, 

indicated by the symbol Zo.  Hence,  

 

Zo = L '
C '   Characteristic Impedance   [1] 

 

This is a remarkable result, since one would expect the input impedance of a circuit that 

had only inductors and capacitors to be reactive (imaginary), but clearly the fact that the 

circuit has an infinite number of components has caused something interesting to happen 

– the input impedance is resistive! 

 

Next, to see how the voltages and currents vary as a functions of position along a 

transmission line, consider the T-circuit for a small section of a transmission line shown 

below.  

Δz
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Since the length of the section Δz is small, the values of the inductance and the 

capacitance are small, so the inductors are nearly short circuits, and the capacitor is 

nearly an open circ circuit. 
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Applying Kirchhoff's voltage law around the outer perimeter of the circuit. A 

clockwise KVL path around the circuit yields 

 

−V +
1
2

′L Δz ∂I
∂t

+
1
2

′L Δz ∂(I + ΛI )
∂t

+V + ΔV = 0  

 
 
where V and I are the voltage and current at the left-hand terminals, respectively, and 

V+ΔV and I+ΔI are the voltage and current at the right-hand terminals, respectively. 

As Δz→0, Ι +ΔI →I, so 
 

 ′L Δz ∂I
∂t

+ ΔV = 0  

 
Dividing both sides by Δz, yields: 
 

 
ΔV
Δz

= − ′L
∂I
∂t

 

 
and taking the limit as Δz→ 0 , this becomes 
 
 

 
∂V
∂z

= − ′L
∂I
∂t

 [2] 

 
 

Next, the voltage across the shunt capacitance C’ Δz  approaches V when Δz is 
small, so we can express the current ΔI flowing through these elements as 

 

ΔI = − ′C Δz ∂V
∂t

 

 
 

Dividing both sides of this expression by Δz, this becomes: 
 

 
ΔI
Δz

= − ′C
∂V
∂t

 

 
which the limit as Δz→ 0  becomes  
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∂I
∂z

= − ′C
∂V
∂t

 [3] 

 
 

Taken as a pair, equations [2] and [3] describe the relationship of the current and 
voltage on a transmission line as a function of both time and position. 

 
 

 
∂V
∂z    = -L’ ∂I

∂t   [4] 

 

  
∂I
∂z   = -C’ ∂V

∂t    . [5] 

 
These are simple differential equations, but they are coupled, since they both contain V 

and I.  To obtain an equation that contains only V, let us first differentiate equation [4] 

with respect to z,  obtaining 

 
∂2V
∂z 2   = -L’ ∂

2I
∂z∂t    [6] 

Here we have assumed that I is a "well behaved" function, so the order of differentiation 

with respect to z and t can be interchanged.  Next, if we differentiate equation [5] with 

respect to t, we have 

 ∂2I
∂t∂z   = - C’ ∂

2V
∂t 2   . [7] 

Substituting equation [7] into equation [6], we obtain a differential equation in terms of 

only V, 

 
∂2V
∂z 2   = L’C’ ∂

2V
∂t 2    . [8] 

We can derive a similar equation for the current I by a similar sequence of steps, 

 
∂2I
∂z 2   = L’C’ ∂

2I
∂t 2    . [9] 

Equations [8] and [9] are called one-dimensional wave equations. 
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Propagating Voltage Waves 
 
To understand the nature of the voltages that can exist on lossless transmission 

lines, let us start by stating the general solution of the voltage wave equation (equation 

[8]): 

 V(t,z) = V +(t-z/u)  + V -(t+z/u)   , [10] 

Where 

u = 1
′L ′C

 

Here, V +(t)  and V -(t)  are arbitrary functions of a single variable and are called 

waveform functions.  To verify that equation [10] satisfies equation [8], we note that the 

second derivatives of V with respect to t and z are 

 ∂2V
∂t 2  = V+ ´´(t - z/u) + V - ´´(t + z/u) [12] 

and 

 ∂2V
∂z 2  = 

1
u2  V+ ´´(t - z/u) + 

1
u2  V - ´´(t + z/u)  , [13] 

where V+ ´´ and V - ´´ are the second derivatives of V +  and V - , respectively.  

Substituting equations [12] and [13] into equation [8], we find that equation [10] is 

indeed the general solution of the wave equation for all waveform functions V +(t)  and 

V -(t) , provided that the parameter u is given by equation [11]. 

The voltage expression given by equation 11.22 consists of waves that travel along 

the transmission line.  To show this, let us for the moment assume that V -(t)  = 0. For this 

case, the voltage expression becomes 
 

 V(t,z) = V +(t-z/u)    . 
 

The figure below shows V(t,z) as a function of time t for three values of z when V +(t)  is a 

"pulse-like" function.  As can be seen, the same waveform is observed at each position, 

with a time-delay that increases linearly with z.  Since the waveform shape is the same 

for all values of z, we call this distortionless (or dispersionless) propagation. This is a 
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characteristic of all lossless transmission lines.  To calculate the propagation velocity, let 

us observe how fast the value of z must change in order for an observer to "ride" on the 

same point of the pulse as it moves.  This occurs when the argument of V +  remains 

constant as time progresses, t - z/u = constant .  Differentiating both sides of this 

expression with respect to t, we obtain 
 

 
dz
dt   = 

1
LC

   = u . 

 

t

V(t,z1)

t

t

V(t,z2)

V(t,z3)

z3 > z2 >z1

 
 

Thus, we can conclude that the waveform V +(t-z/u)  travels (i.e., propagates) towards 

increasing values of z at a rate of 

 
 

 u =  
1
LC

    [m/s] , [14] 

 

where u is called the velocity of propagation.  Waves propagating towards increasing 

values of z  are called forward-propagating waves. 

Returning to the general voltage expression given by equation [10], let us now 

consider the case where V +  = 0 and V - ≠ 0.  For this case, we have 
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 V(t,z) = V -(t+z/u)    . 
 

To "ride" on the same point of this waveform, we must maintain 
 

 t + z/u = constant   . 
 

Differentiating both sides of this expression with respect to t, we obtain 
 

 
dz
dt  = -u = - 

1
LC

    , 

which means that the term V -(t+z/u)  represents a wave traveling in the -z direction at the rate 

|u| = 
1
LC

  .  We will call waves propagating in this direction backward-propagating waves. 

 

Propagating Current Waves 
 

Associated with each traveling-wave voltage is a traveling-wave current. To show 

this, we first remember from equation [9] that the current I(t,z) satisfies exactly the same 

one-dimensional wave equation that V(t,z) does, 
 

  
∂2I
∂z 2   = L’C’ ∂

2I
∂t 2    . [15] 

 

Hence, just as with V(t,z), solutions for I(t,z) are always of the form 
 

I(t,z) = I +(t-z/u)  + I -(t+z/u)   , [16] 
 

where u is given by equation [14].  Although it may appear from equation [15] that the 

waveform functions I +(t)  and I -(t)  are arbitrary, they have the same shapes as the 

forward-propagating and backward-propagating voltage waveform functions, V +(t)  and 

V -(t) , respectively.  To show this, substitute equations [10] and [16] into equation [4], 

obtaining 
 

 - 
1
u  V +(t-z/u)  + 

1
u  V -(t+z/u)   
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 = -L I +(t-z/u)  - L I -(t+z/u)  . 
 

Both sides of this equation will be equal for all values of t and z only when 
  

 
V +(t)
I +(t)

  = Zo   

and 

 
V -(t)
I -(t)

   = - Zo   ,  

 

where 

 Z0 =
′L
′C

 

is the characteristic impedance of the line.  Hence, the voltage and current on the line can 

be finally written as 
 

 V (t, z) = V + (t − z / u) +V − (t + z / u)  
 

 

 I(t, z) = 1
Z0
V + (t − z / u) − 1

Z0
V − (t + z / u)  

 

 

Here, we see that the forward voltage and current waves propagate as a unit, with the 

same velocity and a ratio equal to the characteristic impedance of line.  Similarly,t he 

bacward voltage and current waves also propagate as a unit, with the same velocity, but  

with a ratio equal to the negative of the characteristic impedance of line. 

 

The choice of the name for parameter Zo  , characteristic impedance, is a logical one, 

since it is measured in Ohms and is the ratio of a voltage and a current.  However, this 

impedance, although real-valued, is not like lumped resistors, which dissipate electrical 

energy.  Rather, the characteristic impedance of a transmission line is an indication of its 

ability to transport energy via the propagation of voltage and current waves. 
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Launching Waves on Transmission Lines 
 

A wave can be launched on a transmission line simply by attaching a voltage across 

its terminals.  The Figure a depicts such a situation.  Here, an independent voltage 

generator Vg(t)  and a resistor Rg  are connected to the end of an infinite, lossless 

transmission line.  The waveform shape of Vg(t)  is shown in the Figure, which has a peak 

amplitude of A.  Since the line is infinitely long, the total voltage and current on the line 

consist only of forward-propagating waves, 
 

V(t,z) = V +(t-z/u)  11.46 

and 

I(t, z)= I +(t − z /u)= 1
Z0
V +(t − z /u)  11.47 

Since only a forward-propagating wave exists on the line,  the impedance Zin  looking 

into the line at z =0 is the same for all time t : 

 Zin =
V (t,0)
I(t,0)

=
V + (t − z / u)
1
Z0
V + (t − z / u)

= Z0 . 

Because of this, the input circuit can be redrawn as shown in Figure 11-11b, where the 

infinite transmission line has been replaced by a resistor of value Zo .  Using the voltage 

divider relation, we obtain 
 

 V (t,0) = Z0
Rg + Z0

Vg (t) , 11.48 

which is the amplitude of the transmission line voltage at z = 0.  Substituting this result 

into equations 11.46 and 11.47, we obtain the following voltage and current waves: 
 

 V (t,0) = Z0
Rg + Z0

Vg (t)  11.49 

and 

 I(t,0) = 1
Rg + Z0

Vg (t) . 11.50 
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Figure 11-11: Launching waves on a transmission line: a) A voltage generator connected to an 
infinite transmission line, b) the equivalent circuit as seen by the generator circuit, c) 
the voltage generator waveform, d) the voltage waveform observed a distance z 
along the transmission line. 

 
 
Figure 11-11d shows that V(t,z) is simply a delayed and attenuated version of the 

generator waveform Vg(t) .  Since we assumed that the transmission line is infinitely 

long, the waves launched by the generator will propagate forever without encountering 

any discontinuities.  Because of this,  no backward-propagating waves will appear.  In the 

next section, we will investigate what happens when transmission lines are terminated 

with lumped resistors.  
 

 

11-3.4 Reflections From Resistive Terminations 
 

Figure 11-12a shows a section of lossless transmission line with characteristic 

resistance Zo , terminated with a load resistance of value RL  at z = z´. 
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z = l

V +(t-z/u)

V -(t+z/u)

A

ΓLA

A

ΓLA(1+ )

ΓLA

V -(t+z/u)

ΓLA

Ro RL

Total Voltage

(a)

(b)

(c)

(d)

z

z = l

z = l

z = l

 

Figure 11-12: The process of reflection at a resistive load: a) a transmission line terminated by a 
resistor, b)- d) line voltage along the line before, during, and after the incident pulse 
reaches the resistor, respectively.  

 

We will assume that a source far off to the left of the figure has launched 

forward-propagating (or incident) voltage and current waveforms that are described by 
 

 Vinc(t,z)  = V +(t-z/u)  11.51 

And 

 Iinc(t, z)= I
+(t − z /u)= 1

Z0
V +(t − z /u) , 11.52 

where V +(t-z/u)  has a peak amplitude of A.  If we assume that the waveform V +(τ)  is 

zero for τ <0, the leading edges of the incident waves will not reach the load until t = l/u.  

Thus, V +(t-z/u)  and I +(t-z/u)  are the only waves on the line for t < l/u. 
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When the incident waves reach the load, backward-propagating waves will be 

initiated at the load if RL ≠Zo .  To see why, let us suppose that only the 

forward-propagating waves are present on the line for all values of t.  If this were the 

case, the load voltage VL(t)  and current IL(t)  would simply be the incident waves, 

evaluated at z = l, 
 

 VL(t)  = V(t,l) = V +(t - l/u)  

and 

 
 
IL (t) = I(t,) =

1
Z0
V + (t −  / u) . 

However, at the load, the ratio of the voltage and current must equal the load resistance RL  
 

 
VL(t)
IL(t)   = RL   . 11.53 

 

Substituting the expressions for VL(t)  and IL(t)  into this equation, we find that the load 

resistance must be 
 

 RL  = Zo   . 
 

A load that is equal to the characteristic resistance produces no reflections and is called a 

matched load.  When RL  ≠ Ro , equation 11.53 is not satisfied, which means the incident 

waves alone cannot satisfy the conditions of both the transmission line and the load. 

To model the case where RL  ≠ Zo , let us again assume that the same forward-

propagating waves V +(t-z/u)  and I +(t-z/u)  are incident from the left in Figure 11-12a, 

but this time let us also speculate that reflected, backward-propagating waves are also 

present.  Hence, the total voltage and current on the line are given by  
  

 V(t,z) = V +(t-z/u)  + V -(t+z/u)  11.54 
 

and 

 I(t, z)= I +(t − z /u)+ I −(t + z /u)= 1
Z0
V +(t − z /u)− 1

V0
V −(t + z /u)   , 11.55 
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where V -(t)  is a yet-to-be-determined reflected waveform.  Also, note that the negative 

polarity of the reflected current I -(t+z/u)  occurs because this wave is 

backward-propagating (see equation 11.32).  Evaluating these expressions at z=l, the 

voltage VL(t)  and current IL(t)  at the load are 
 

 VL(t,z´)  = V +(t,l)  + V -(t,l)  

and 

 
 
IL (t, ′z ) =

1
Z0
V + (t,) − 1

Z0
V − (t,) . 

From these expressions, the ratio of the load voltage and load current is 
 

 

 

VL (t)
Il (t)

=
V + (t,) +V − (t,)

1
Z0
V + (t,) − 1

Z0
V − (t,)

. 

Setting this expression equal to the load resistance RL  and solving for V -(t) , we obtain 

 V -(t,l)  = ΓL V +(t,l)  , 11.56 

where ΓL  is the reflection coefficient, defined by 
 

 

 ΓL ≡
V − (t)
V + (t)

at the load

=
RL − Z0

RL + Z0

. 11.57 

 

Substituting equation 11.56 into equations 11.54 and 11.55, we obtain the complete 

expressions for the voltage waves on a terminated line, 
 

 V(t,z) = V +(t-z/u)  + ΓL V +(t+z/u)  11.58 

and 

 I(t) = 1
Z0

V + (t − z / u) − ΓLV
+ (t + z / u)( ) . 11.59 

These voltage and current waves satisfy the requirements of both the transmission line 

and the load resistance. 

From equation 11.58, we see that the reflected voltage waveform has the same 

shape as the incident waveform, with an amplitude that is governed by the reflection 
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coefficient ΓL .  For passive load resistances (RL≥0) , ΓL  has a magnitude that is always 

less than or equal to unity; 
 

−1 ≤ ΓL  ≤ 1     . 11.60 

Notice that ΓL =0 when RL  = Zo , which means that no reflection is generated by a 

matched load.  For this case, all the power in the incident voltage and current waves is 

dissipated by the load. 

Figures 11-12b-d shows the incident, reflected, and total voltages on the terminated 

transmission line for three values of t.  When t1 <l/u (Figure 11-12b), the leading edge of 

the incident wave has yet to reach the load, so only the incident wave appears on the line.  

Even so, it is convenient to show the yet-to-appear reflected wave as a dotted curve to the 

right of the load position (z=l) that propagates towards the left.  The peak amplitude of 

this reflected wave is ΓL Vp , where Vp  is the peak amplitude of the incident wave.   

Figure 11-12c and 11-12d show the voltages at two instants in time after the incident 

waveform has reached the load.  In these plots, the incident waveform is drawn as a 

dotted line in the region z>L to remind us that this region of the graph does not represent 

actual points on the transmission line.  In Figure 11-12c, the incident and reflected 

waveforms appear simultaneously across the load, since the reflected wave is generated 

at the load the instant the incident wave appears.  Figure 11-12d shows that once the 

incident wave has encountered the load, only the reflected wave is left on the line 

(assuming that there is no mismatch at the generator). 
 

11-3.5 Step Response of Transmission Lines 
 

We are now ready to discuss the full transient response of transmission lines that 

are terminated at both ends. To introduce this topic, consider the set-up shown the figure 

below. Here, a transmission line with characteristic resistance Zo =50 [Ω] and length l =3 

[m] is connected to a load resistor RL =100 [Ω].  The source consists of a 12 [V] battery, 

a resistor Rg = 10 [Ω], and a switch that closes at t =0. Also, the velocity of propagation 

is u =3x108  [m/s], so the one-way propagation delay from end to end is 10 [ns]. 
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When the switch closes at t  = 0, a step waveform is launched towards the load with 

an amplitude V1  given by equation 11.49, 

 V1  = 
50

50+10  12 = 10 [V]  . 

 

For 0<t<10 [ns], this is the only voltage wave on the line. Figure 11-13b shows the line 

voltages at t = 7 [ns]. 

At t=10 [ns], the leading edge of the incident waveform reaches the load, where a 

reflected wave is produced.  The reflection coefficient at the load end is 
 

 ΓL  = 
100-50
100+50  = 

1
3  , 

 

so the first reflected wave has amplitude 
 

 V2  = V1 ΓL  = 10 x 
1
3  = 3.3333 V   . 

 

The following figure 11-13c shows the line voltages at t=17 [ns]. 

The first reflection from the load reaches the generator terminals at t =20 [ns].  

Since the generator resistance is not matched to the transmission line, a reflected wave 

will be produced that propagates towards the load.  The amplitude of this reflected wave 

is not affected by the battery, since, according to the superposition principle, the battery 

voltage has already been accounted for in the first forward-propagating wave (launched at 

t=0). The reflection coefficient Γg  at the generator end is 

 

 Γg  = 
10-50
10+50  = - 

2
3  , 

 

so the reflection of V2  off the generator resistance is 
 

 V3  = Γg V2  = - 
2
3  x 3.3333  = -2.222 V  . 

 

Figure 11-13d shows the voltages on the line at t=27 [ns]. 
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Figure 11-13: Transient response of a transmission line, switched at t = 0: a) the circuit, b)-

d) voltage waveforms on the line at three points in time.  The arrows show 
the propagation directions of the leading edges of the waveforms. 

 

By now, the method for determining the subsequent reflections on the line should 

be obvious.  To determine Nth  reflection at either the generator or load, all that must be 

known is the amplitude of the approaching (N-1)th  wave and the reflection coefficient.  

In this way, the total voltages on the line can be considered as an infinite sum of 

reflections.  Since the reflection coefficients of passive loads have magnitudes less than 
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or equal to the previous one, the higher order reflections eventually have negligible 

amplitudes.  As a result, the step response of a transmission line approaches a constant 

value along the entire line as t → ∞. 

Figures 11-13b through 11-13d show "snapshots" of the voltages on the line at various 

points in time.  Plots like these give a global picture of how the waves reflect and 

re-reflect off the terminations.  Another useful way to determine the step response of a 

transmission line is by using a bounce diagram, such as the one shown in the Figure 

below.   

V1
+

ΓLV1
+

ΓgΓLV1
+

ΓgΓ
2
LV1

+

z

t

T

2T

3T

4T

ll /3  
Figure 11-14: A transmission line bounce diagram. 

 

In a bounce diagram, the progression of the leading edges of the incident and reflected 

voltage waves are displayed as functions of both time and position. In Figure 11-14, the 

line marked "V1
+ " indicates the progress of the leading edge of the wave launched by the 

generator as it propagates towards the load.  This line starts at (t=0,z=0) and ends at 

(t=T,z=l), where T = l/u is the one way transit time.  The line marked ΓL V1
+  represents 

the first reflection off the load.  This line starts at t = T and has a negative slope, since it 

represents a backward-propagating wave.  In like manner, each of the subsequent 
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reflections are represented by lines that have alternating positive and negative slopes and 

begin at progressively later times. 

To obtain the voltage waveform V(t,z´) at a point z = z´ on a transmission line, we 

first draw a vertical line at z = z´ on the bounce diagram.  Next, starting at t=0 and z = z´, 

we progress vertically on this line,  noting the times tn  where this line intersects the lines 

representing each wave.  At each value of tn , the waveform V(t,z´) will exhibit a step 

discontinuity equal to the value of the newest wave arriving at that point.  Figures 

11-15a&b show V(t,z´) at z´=1 [m] and z´ =3 [m], respectively, for the transmission line 

network shown in Figure 11-15a when the transmission line has length l = 3 [m]. 

13.33 [V]
10.86 [V]

10.37 [V]

t [ns]10 3020 40 50 60
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Figure 11-15: Voltage waveforms for the circuit in Figure 11-15a: a) z´ = 1 [m], b) 

z´ = 3 [m] 

 

In particular, the waveform at z´ = 3.0 [m] has fewer jumps in this time interval than the 

waveform at z´ = 1.5 [m].  This is because an observer at the load (z´ = 3.0 [m]) "sees" 

the leading edges of the incident wave and its reflection simultaneously, whereas an 

observer in the center of the transmission line sees them at different times. 

 


